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Abstract. The stability analysis of a path-following controller for au-
tomated vehicles is presented, with the consideration of path curvature
and feedback delay. The analysis is based on a kinematic vehicle model
expressed in a path reference frame. The steering controller includes feed-
forward and feedback terms, and the time delay in the control loop is
also considered. The effects of the path curvature are analyzed using com-
pact analytical expressions, stability charts and numerical simulations.
The results help the designer select the optimal control gains and the lim-
itations of tuning the controller with the assumption of a straight-line
reference path are also shown.
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1 Introduction

Designing stable and safe path following controllers with sufficiently high perfor-
mance is a crucial step towards vehicle automation and it is also a cornerstone of
many advanced driver assistance systems, such as lane-keeping and lane chang-
ing control. There are many different approaches to design the corresponding
controllers, from simple geometrical considerations to machine learning-based
methods [1]. The designed controller must be able to maintain its performance
and stability under a variety of circumstances: the controlled vehicle must be
able to handle unexpected disturbances such as road surface irregularities and
suddenly appearing obstacles [2], the variation of the road curvature [3], as well
as sensor uncertainties and noise. In addition, the feedback delay in the control
loop has also been shown to greatly impact the performance of path following
[4].

In this study, the analysis of a steering controller for path following is pre-
sented, with the consideration of time delay in the control loop and the curvature
of the reference path. The calculations are based on a kinematic single-track vehi-
cle model and a constant path curvature, which allows us to present the results in
the form of compact analytical expressions. The constraint forces at the wheels
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are also calculated to ensure that loss of traction does not occur. We derive
compact analytical expressions for the stability boundaries and optimal control
gains, and present the results using stability charts and numerical simulations.
Our results show the benefits of taking into account the path curvature when
tuning the controller, especially in the case of highly dynamic maneuvers.

The rest of the paper is organized as follows: Section 2 presents the derivation
of the vehicle model both in a global coordinate system and a path reference
frame. The path following controller is introduced in Section 3, while the stability
analysis is performed in Section 4. The results are concluded in Section 5.

2 Vehicle model

The vehicle model considered in this study is an in-plane, single-track (bicycle)
model (see Fig. 1), where the vehicle is modeled with respect to its longitudinal
axis, and the roll, pitch and vertical dynamics are neglected. Furthermore, we
assume that no tire deformation occurs at the wheels, i.e. the tire side slip angles
remain zero.

The vehicle parameters consist of the wheelbase f , the distance d between
the center of gravity G and the rear axle center point R, the vehicle mass m and
the yaw moment of inertia about the center of mass JG.

Fig. 1. Vehicle model in path reference frame.

2.1 Vehicle model in the global reference frame

In the global reference frame, we use the coordinates xR and yR of point R,
as well as the yaw angle ψ as generalized coordinates to describe the location
and orientation of the vehicle. Since no tire side slip is considered in our model,
the direction of the velocity vectors at the front and rear axle are determined
by the rolling direction of the wheels: at the front (point F), this corresponds
to the steering angle δs, while the velocity vector in point R points into the
longitudinal direction. Furthermore, we assume a constant longitudinal speed
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V , corresponding to a rear-wheel drive vehicle. These considerations can be
described by the following three kinematic constraint equations:

ẋR sin(ψ + δs)− ẏR cos(ψ + δs)− fψ̇ cos δs = 0, (1)

−ẋR sinψ + ẏR cosψ = 0, (2)

ẋR cosψ + ẏR sinψ = V. (3)

From Eq. (1)–(3), the time derivatives of the generalized coordinates (often called
as generalized velocities) can be expressed as

ẋR = V cosψ, ẏR = V sinψ, ψ̇ =
V

f
tan δs . (4)

In addition, by taking the time derivative of Eq. (4), the acceleration components
of point R and the angular acceleration of the vehicle are:

ẍR = −V
2

f
sinψ tan δs, ÿR =

V 2

f
cosψ tan δs, ψ̈ =

V

f cos2 δs
δ̇s. (5)

Although the tire dynamics are not considered in our vehicle model, we still
want to ensure that no loss of traction occurs. This can be verified by calculating
the constraint forces acting at the wheels due to the kinematic constraints in
Eq. (1)–(3) (denoted by FF,lat, FR,lat and FR,long in Fig. 1), and comparing these
with the friction limits. We use Lagrange’s equations to calculate the constraint
forces:

d

dt

∂T

∂ẋR
− ∂T

∂xR
= ν1A11 + ν2A21 + ν3A31, (6)

d

dt

∂T

∂ẏR
− ∂T

∂yR
= ν1A12 + ν2A22 + ν3A32, (7)

d

dt

∂T

∂ψ̇
− ∂T

∂ψ
= ν1A13 + ν2A23 + ν3A33, (8)

where T is the kinetic energy of the system, ν1, ν2 and ν3 are Lagrange multi-
pliers corresponding to the constraint forces of the three kinematic constraints
in Eq. (1)–(3), while Aij (i, j ∈ {1, 2, 3}) are the coefficients of ẋR, ẏR and ψ̇ in
Eq. (1)–(3). Namely,

A11 = sin(ψ + δs), A21 = − sinψ, A31 = cosψ, (9)

A12 = − cos(ψ + δs), A22 = cosψ, A32 = sinψ, (10)

A13 = −f cos δs, A23 = 0, A33 = 0. (11)

The kinetic energy can be calculated as

T =
1

2
m
(
ẋ2G + ẏ2G

)
+

1

2
JGψ̇

2, (12)

where the velocity of the center of mass consists of

ẋG = ẋR − dψ̇ sinψ, ẏG = ẏR + dψ̇ cosψ. (13)
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Substituting Eq. (9)–(13) into Eq. (6)–(8), the Lagrangian equations read:

m(ẍR − dψ̇2 cosψ − dψ̈ sinψ) = ν1 sin(ψ + δs)− ν2 sinψ + ν3 cosψ, (14)

m(ÿR − dψ̇2 sinψ + dψ̈ cosψ) = −ν1 cos(ψ + δs) + ν2 cosψ + ν3 sinψ, (15)

−mdẍR sinψ +mdÿR cosψ + (JG +md2)ψ̈ = −ν1f cos δs. (16)

Solving Eq. (14)–(16) for the three Lagrange multipliers, then substituting Eq. (4)
and (5) leads to

ν1 = − V

2f2 cos3 δs

(
mdV sin(2δs) + 2(JG +md2)δ̇s

)
, (17)

ν2 =
V

2f2 cos2 δs

(
(f − d)mV sin(2δs)− 2 (JG − (f − d)dm) δ̇s

)
, (18)

ν3 =
V

f2 cos2 δs
(JG +md2)δ̇s tan δs. (19)

Furthermore, it can be proven using Newton’s second law that the Lagrange
multipliers correspond to the constraint forces as FF,lat = −ν1, FR,lat = ν2 and
FR,long = ν3. Loss of traction will not occur, as long as the constraint forces at
the front and rear wheels do not exceed the friction limits, i.e.

FF,lat < µFFF,z, (20)√
F 2
R,lat + F 2

R,long < µRFR,z, (21)

where µF and µR are the coefficients of friction, while FF,z = mgd/f and FR,z =
mg(f − d)/f are the vertical wheel loads at the front and rear wheels in steady-
state condition, respectively.

2.2 Transformation to path reference frame

In order to design a path following controller, the vehicle model is now trans-
formed to the path reference frame (ξ, η) that moves along the desired path as
the vehicle moves forward (see Fig.1). The details of the transformation can be
found in [5].

Our control goal is to ensure that the rear axle center point R follows the
reference path. Assume that the closest point along the reference path to R is
point C. Then the lateral error can be calculated as eC = (tC × rCR) · k, where
tC is the tangential unit vector to the path in point C, the vector rCR points
from C to R, and k is the unit vector normal to the plane of motion. Using the
direction ψC of the tangential vector tC, the lateral deviation of the vehicle can
be expressed as

eC = −(xR − xC) sinψC + (yR − yC) cosψC, (22)

while the angle error is

θC = ψ − ψC. (23)
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Note that the coordinates xC and yC of point C, the angle ψC as well as the
curvature κC of the reference path in point C all depend on the arc length sC
and are assumed to be given. The transformation from the absolute position
and orientation of the vehicle (xR, yR, ψ) to the relative position and orientation
(sC, eC, θC) with respect to the reference path can be performed as

ṡC =
cosψC

1− κCeC
ẋR +

sinψC

1− κCeC
ẏR, (24)

ėC = −ẋR sinψC + ẏR cosψC, (25)

θ̇C = −κC cosψC

1− κCeC
ẋR −

κC sinψC

1− κCeC
ẏR + ψ̇ (26)

(see [5] for details). Substituting the equations of the kinematic vehicle model
(Eq. (4)) results in

ṡC =
V cos θC
1− κCeC

, (27)

ėC = V sin θC, (28)

θ̇C =
V

f
tan δs −

V κC cos θC
1− κCeC

, (29)

where the first equation describes the longitudinal motion of point C as it moves
along the reference path, while the remaining two equations correspond to the
evolution of the lateral deviation and the angle error of the vehicle. Note that
since the curvature κC depends on the arc length sC, all three equations are
coupled. In the following, the transformed equations will be used to design a
path-following controller.

3 Path-following control

In order to ensure that the rear axle center point can follow the reference path,
the steering angle of the vehicle will be generated using the combination of a
feedforward term δFFs and a stabilizing feedback term δFBs :

δs(t) = δFFs + δFBs . (30)

Based on the kinematics of the vehicle in Eq. (27)–(29), the ideal steering angle
to follow a reference path of curvature κC with zero position and angle error is

δFFs = arctan (κCf) , (31)

while the feedback controller is designed with the proportional feedback of the
error terms eC and θC:

δFBs (t) = −PeeC(t− τ)− PθθC(t− τ). (32)

The control gains are denoted by Pe and Pθ, and we also consider the time delay
τ in the feedback loop, which includes sensing and communication delays, signal
processing time as well as actuator delays.
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4 Stability analysis

In the following, we perform the linear stability analysis of the closed-loop sys-
tem consisting of the vehicle model in path reference frame (Eq. (27)–(29)) and
the path following controller defined in Eq. (30)–(32). The stability analysis is
performed for the case of constant path curvature (κC = const.). Moving along
the reference path with zero error and a constant speed V corresponds to the
steady state sC = V t, eC ≡ 0 and θC ≡ 0. After linearizing the closed-loop sys-
tem around this steady state, the equation of sC can be decoupled from the rest
(i.e. the longitudinal and lateral dynamics can be treated separately), leading to
the linear model

ẋ(t) = Ax(t) + BKx(t− τ), (33)

where the state vector is x =
[
eC θC

]T
, the control gains are collected into

K =
[
−Pe −Pθ

]
, and the system and input matrices are

A =

[
0 V

−V κ2C 0

]
, B =

[
0

V
f + V fκ2C

]
. (34)

Using an exponential trial function, the characteristic equation of the controlled
vehicle can be reached as

D(λ) := det
(
λI−A−BKe−λτ

)
= 0, (35)

where λ = ρ+ iω is the (complex) characteristic exponent and I is the identity
matrix. After substitution, the characteristic function reads:

D(λ) = λ2 +
1

f
PθV

(
1 + f2κ2C

)
λe−λτ + V 2

(
Pe
f

+ Pefκ
2
C

)
e−λτ + V 2κ2C.

(36)

Because of the time delay in the system, the characteristic equation is tran-
scendental in λ, and the stability analysis can be performed using e.g. the D-
subdivision method [6]. At the boundaries of stability loss, the critical charac-
teristic exponent will be purely imaginary, e.g. λ = iω. If ω = 0, static stability
loss occurs, which can happen at the stability boundary D(λ = 0) = 0, i.e.

Pe = − fκ2C
1 + f2κ2C

. (37)

Notice that for κC = 0, this corresponds to Pe = 0, but for non-zero path cur-
vature, the stability limit moves into the negative region of Pe.

The boundaries of dynamic stability loss can be analyzed by separating the
real and imaginary parts of the equation D(λ = iω) = 0. Solving the resulting
two equations for the control gains Pe and Pθ leads to the stability boundaries
in the (Pe, Pθ) plane:

Pe(ω) =
f(ω2 − V 2κ2C) cos(ωτ)

V 2(1 + f2κ2C)
, Pθ(ω) =

f(ω2 − V 2κ2C) sin(ωτ)

V (1 + f2κ2C)ω
. (38)
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Table 1. Vehicle parameters used in stability charts and numerical simulations

f (m) d (m) m (kg) JG (kgm2) V (m/s) τ (s) µF µR

2.7 1.35 1430 2500 20 0.5 1 1

Fig. 2. (a) The stable domain of control gains for different values of path curvature
κC. (b) Contourlines of the real part of the rightmost characteristic exponent along
the stable domain. The red dot denotes the optimal gain combination that leads to the
fastest decay of small oscillations.

The stable domain is enclosed by the stability boundary as shown in Fig. 2(a)
for the vehicle parameters in Table 1. It can be seen that increasing the path
curvature κC leads to a slight shift in the location of the stable domain towards
the negative control gain directions. However, even if the path curvature reaches
the critical value κcritC , where the steady state tire forces exceed the friction limits
(as defined in Eq. (20) and (21)), the change in the stable domain of control gains
is not very significant.

To check how the performance of the controller changes by varying the two
control gains inside the stable domain, the above calculations can be repeated
by also taking into account the real part ρ of the critical characteristic exponent,
which corresponds to the decay rate of small oscillations. Figure 2(b) shows the
contour lines inside the stable domain that correspond to a given value of ρ.
Similarly to the boundaries of static and dynamic stability loss, the contour
lines for a given value of ρ < 0 can be separated into a straight line where ω = 0
(i.e. the critical characteristic exponent is λcr = ρ) and a curve where ω > 0 (i.e.
λcr = ρ± iω). The best control performance can be achieved when the value of ρ
is minimized, which occurs if the slope of the straight contour line corresponding
to ω = 0 is equal to the initial slope of the curve, i.e. there is no enclosed area
between the two. The real part of the critical characteristic exponent in this case
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is

ρopt =
1

τ2

(
−2τ +

√
2τ2 − V 2κ2Cτ

4

)
, (39)

and the corresponding optimal control gains can be calculated as

P opt
e =

2fe−2+
√

2−V 2κ2
Cτ

2
(
−7 + V 2κ2Cτ

2 + 5
√

2− V 2κ2Cτ
2
)

V 2(1 + f2κ2C)τ2
, (40)

P opt
θ =

2fe−2+
√

2−V 2κ2
Cτ

2
(
−1 +

√
2− V 2κ2Cτ

2
)

V (1 + f2κ2C)τ
. (41)

Fig. 3. The real parts of the rightmost characteristic exponents as a function of the
control gain Pe for different values of path curvature κC. Black continuous and blue
dashed lines represent real and complex conjugate pairs of characteristic roots, re-
spectively. The color of the stability boundary ρ = 0 indicates the stable (green) and
unstable (red) ranges of Pe. The value of Pθ is set as the optimum in each panel, as
follows: (a) Pθ = 0.1245, (b) Pθ = 0.1210, (c) Pθ = 0.1151.

Figure 3 shows the real parts of the rightmost characteristic roots as the
control gain Pe is varied, for three different values of path curvature. In each
panel, the value of Pθ is fixed to the optimum P opt

θ , calculated using the corre-
sponding path curvature κC. It can be seen that at the boundary of static loss of
stability (P fold

e ), a real characteristic exponent crosses the imaginary axis (black
curves), while at the boundary of dynamic stability loss (PHopf

e ), a complex con-
jugate pair of roots move to the right half plane (blue dashed lines), leading to
a Hopf bifurcation in the nonlinear system. The best control performance can
be achieved by selecting the control gain P opt

e , where the real and the complex
conjugate pair of roots merge.

The root tendencies in Fig. 3 show that as the path curvature is increased,
the optimal gain P opt

e decreases. Additionally, if the controller is tuned with the
assumption of a straight-line reference path (using the optimal gains in Fig. 3(a)),
then as the path curvature increases (while the control parameters remain fixed),
the rightmost roots will move closer to the imaginary axis, leading to a decrease
in control performance.
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Fig. 4. The optimal control gains (panels (a) and (b)) and the real part of the rightmost
characteristic exponent (panel (c)) as the path curvature is increased. Panels (d)-(f):
numerical simulations with (point B) and without (point A) taking into account the
path curvature when tuning the controller.

This effect is further illustrated in Fig. 4. Panels (a) and (b) show how the
optimal control gains change as the path curvature increases from zero to κcritC ,
where loss of traction occurs in steady state. It can be seen that the location
of P opt

θ is not very sensitive to the path curvature, but the optimal value of Pe
decreases to less than its third until κcritC is reached. In panel (c), the real part
of the rightmost characteristic root is plotted for increasing path curvatures,
assuming an optimally tuned controller. This indicates that as long as the con-
trol gains are adjusted, the path curvature does not affect control performance
significantly. On the other hand, the dashed line in panel (c) shows that if the
optimal gains corresponding to κC = 0 are used regardless of path curvature,
the rightmost roots will move closer to the imaginary axis as κC is increased,
and control performance will degrade.

A pair of numerical simulations using the nonlinear vehicle model are shown
in panels (d)-(f) (vehicle parameters are listed in Table 1). In order to better
illustrate the effect of properly tuning the controller, the reference path is chosen
to be a circle of curvature κcritC (we note that transients are not accounted for in
our calculations of determining the critical path curvature, therefore this choice
would be highly unsafe in practice). In the orange trajectory (point A in panels
(a)-(c)), the optimal control gains for κC = 0 are selected, while in the blue
trajectory (point B), the gains have been adjusted according to the reference
path. It can be seen that if the control gains are not adjusted, some overshoot
will appear in the system response, while using the properly tuned optimal gains
leads to a visibly smoother trajectory. Under normal driving conditions, the
difference would mainly affect passenger comfort, but in highly dynamic, safety
critical maneuvers, the difference in overshoot might determine whether loss of
traction occurs or not.
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5 Conclusion

The stability analysis of a path following controller with feedback delay was
performed in this paper, with the consideration of the curvature of the reference
path. Using a simple, kinematic vehicle model, analytical expressions have been
derived for the stability boundaries and the optimal control gains in terms of
the fastest decay of the linearized system. Using stability charts and numerical
simulations, we showed that taking into account the path curvature when tuning
the controller leads to smoother path following without overshoot. This improves
passenger comfort and allows performing a wider range of emergency maneuvers.

The main limitation of the current study is that tire behavior and loss of
traction was only indirectly taken into account, therefore the results should be
verified using a higher fidelity vehicle model too, especially if highly dynamic
maneuvers are considered.
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